Dynamic bowtie for fan-beam CT.
نویسندگان
چکیده
A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy discriminating photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. With a mechanical rotation of a dynamic bowtie and an adaptive adjustment of an x-ray source flux, an x-ray beam intensity profile can be modulated. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dynamic range of detected signals inside the field of view. Although our design is optimized for an elliptical phantom, the resultant dynamic bowtie can be applied to a real fan-beam scan if the underlying cross-section can be approximated as an ellipse. Furthermore, our design methodology can be applied to specify an optimized dynamic bowtie for any cross-section of a patient, preferably using rapid prototyping technology.
منابع مشابه
Usability assessment of cone beam computed tomography with a full-fan mode bowtie filter compared to that with a half-fan mode bowtie filter
Background: In intensity modulated radiation therapy, cone beam computed tomography (CT) has been used to evaluate patients prior to treatment. This study conducted a comparative evaluation of the image reconstruction ability of the clinically used half-fan bowtie filter and the full-fan bowtie filter. Materals and Methods: A CT simulation marker was inserted inside a human phantom, and the pel...
متن کاملDynamic Bowtie Filter for Cone-Beam/Multi-Slice CT
A pre-patient attenuator ("bowtie filter" or "bowtie") is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed...
متن کاملThe influence of bowtie filtration on cone-beam CT image quality.
The large variation of x-ray fluence at the detector in cone-beam CT (CBCT) poses a significant challenge to detectors' limited dynamic range, resulting in the loss of skinline as well as reduction of CT number accuracy, contrast-to-noise ratio, and image uniformity. The authors investigate the performance of a bowtie filter implemented in a system for image-guided radiation therapy (Elekta onc...
متن کاملstimate bowtie filter shape in PET/CT scan with TLD
Introduction: The CT machine utilizes a bowtie filter to shape the X-ray beam and remove lower energy photons. Configuration of this bowtie filter is complex and its geometry is often not available in detail. It causes the CT dose index (CTDI) be with the different values in measurement versus Monte Carlo simulation studies and other analytical calculations. It is important esp...
متن کاملEstimate bowtie filter shape in PET/CT scan with TLD
Introduction: The CT machine utilizes a bowtie filter to shape the X-ray beam and remove lower energy photons. Configuration of this bowtie filter is complex and its geometry is often not available in detail. It causes the CT dose index (CTDI) be with the different values in measurement versus Monte Carlo simulation studies and other analytical calculations. It is important esp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of X-ray science and technology
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2013